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Abstract

Latent variables are ubiquitous in macroeconomics and structural models are
often used to characterize and estimate them from empirical data. This paper
addresses the problem of identifying the key sources of information with respect to
latent variables in dynamic stochastic general equilibrium models. To that end,
I show how to evaluate the information content of a set of observable variables
with respect to a given latent variable. The methodology enables researchers to
measure and compare the informational contribution of different observables and
identify the most informative ones. Thus, it provides a framework for a rigorous
treatment of such issues, which are often discussed in an informal manner in the
literature. The methodology is illustrated with an assessment of the informational
importance of asset prices with respect to news shocks in the business cycle model
developed by Schmitt-Grohé and Uribe (2012)
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1 Introduction

Latent variables are ubiquitous in modern macroeconomics. Examples include endoge-
nously determined quantities, such as potential output, permanent income, and natural
interest rate, as well as a wide range of exogenous shocks hypothesized by different
economic theories to be the primary sources of aggregate fluctuations. Such variables are
treated as unobservable because they represent purely theoretical concepts and nothing
we see in the real world directly matches them. Models based on economic theory, which
characterize relationships between unobserved variables and observable quantities, are
required to measure the former using empirical data. Fully articulated dynamic stochastic
general equilibrium (DSGE) models are particularly suitable for that purpose as they
provide a framework for modeling the structure linking multiple potentially observable
variables on one hand, and latent ones, on the other, in an internally consistent manner.

Estimated latent variables play a crucial role when models are used to give a structural
interpretation of the observed movements in key macroeconomic aggregates. The potential
of DSGE models to provide a plausible account of economic fluctuations is often invoked
as a major advantage over using reduced-form models, which often yield a superior fit to
the data. In practice, this is achieved by conducting historical decompositions of both
observed and unobserved endogenous variables in terms of the underlying exogenous
forces driving them. Such decompositions are only credible if the latent variables of
interest are accurately estimated, i.e. if the observed data is sufficiently informative
about them.

The purpose of this paper is to show how to assess DSGE models’ implications for
the contribution of information of observable variables with respect to latent ones. Such
issues are frequently discussed in a heuristic fashion in the literature. My aim here is
to describe how to approach them in a formal manner. Intuitively, information can
be interpreted as the reduction of uncertainty about an unknown quantity. This is
made precise by using well-established measures of uncertainty, mutual information and
information gains developed in information theory. The transfer of information between
variables is quantified by comparing different probability distributions, e.g. distributions
of a given shock conditional on nested sets of observables. The required distributions
are completely characterized by the underlying structural model, and in the class of
linearized Gaussian DSGE models those quantities are available in closed form.

One practical application of the methodology is to reveal what type of data are
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required to best identify a given structural shock. As noted earlier, this is often a key
requirement for estimated models to provide credible interpretations of past and present
economic developments. Understanding where information about different shocks comes
from is not always a simple matter, however, especially in cases where new and less well
understood types of shocks are incorporated into otherwise standard macroeconomic
models. The estimation of such models typically involves, in addition to standard
macroeconomic series, other variables, which the authors believe are informative about
the shocks they introduce. For instance, data on corporate cash flows, loans, equity, and
bond yields have been used to estimate models with financial shocks (see e.g. Gilchrist
et al. (2009a), Kaihatsu and Kurozumi (2014) and Ajello (2016)). Financial variables are
also used in Christiano et al. (2014) to help identify risk shocks in their model. Other
recent examples in the same vein are Ilut and Schneider (2014), who use data on survey
forecasts dispersion to identify confidence shocks, and Liu et al. (2013) who use land
price data in the estimation of a model featuring housing demand shocks.

To illustrate the proposed methodology, I examine the informational relevance of
asset prices in a DSGE model with news shocks. The existing literature on news-driven
business cycles is divided on the subject of whether such models can be estimated using
only standard macro variables, or if other types of data are required to identify news
shocks. Among the studies using only standard macro variables are Fujiwara et al. (2011),
Milani and Treadwell (2012), and Schmitt-Grohé and Uribe (2012). Asset prices are used
to estimate models with news by Davis (2007), Avdjiev (2016), Görtz and Tsoukalas
(2017), and Bretscher et al. (2019), while Hirose and Kurozumi (2012), Milani and
Rajbhandari (2012), and Miyamoto and Nguyen (2019) use survey data on expectations.
The rationale for using asset prices in particular is based on the intuition that, due to the
existence of various real and nominal rigidities in the economy, macro variables are far
less sensitive to news than asset prices. Consequently, asset price variables are perceived
to be more informative about news shocks than the variables commonly used to estimate
models without news. Some empirical evidence to support this view can be found in the
structural VAR literature, where variables such as stock prices often play a central role
for the identification of news shocks. For instance, Görtz and Tsoukalas (2017) invoke
the findings of Gilchrist et al. (2009b) and Gilchrist and Zakraǰsek (2012) to motivate the
use of corporate bond spreads in the estimation of their model. Similarly, Bretscher et al.
(2019) cite the work of Beaudry and Portier (2006) and Kurmann and Otrok (2013), who
found stock prices and the slope of the term structure of interest rates to be informative
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about news shocks, to motivate the inclusion of these variables in their estimation.
The methodology presented here can be used to determine if the intuition that asset

prices are more informative about news shocks than macro variables is correct in the
context of a given model. I consider the model estimated in Schmitt-Grohé and Uribe
(2012) and study the information contributed by two asset prices – the value of the
representative firm and the risk-free real interest rate. The results suggest relatively
small informational value of observing either variable. While including asset prices as
observables increases the amount of information about some news shocks, their marginal
contributions are comparable to the contributions of non-asset price variables, such as
hours worked, total factor productivity, or the relative price of investment. The only
news shocks with respect to which asset prices, specifically the risk-free interest rate,
are found to be more informative than any other variable are news about the stationary
neutral productivity shock.

While the primary focus of this article is on identifying the key sources of information
with respect to latent variables, in some cases it may also be useful to know where
information about particular model parameters, related to those variables, come from.
For instance, in the context of news-driven models, the claim that asset prices are
especially useful for identifying news shocks may refer to information these variables
contribute with respect to parameters characterizing the marginal distributions of news
shocks. To evaluate the information content of observables with respect to parameters, I
compute measures of efficiency gains that compare the values of the Cramér-Rao lower
bounds conditional on different sets of observed variables. Again, the results show that
while including asset prices as observables would lead to significant efficiency gains with
respect to the news shock parameters, the gains are similar in size to those due to
standard macroeconomic variables, such as hours worked and total factor productivity.

The remainder of the article is organized as follows. Section 2 discusses the relationship
between this paper and the existing literature. Section 3 gives an overview of the relevant
information-theoretic concepts, and defines measures of information gains with respect to
latent variables, and efficiency gains with respect to parameters. The proposed measures
are then applied, in Section 4, to evaluate the information content of asset prices in a
DSGE model with news shocks. Section 5 concludes.
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2 Relationship to prior literature

In terms of methodology, this paper is related to a large literature on measuring the
relative importance of variables in scientific models. A common application of this type
of analysis is to determine the relative importance of individual regressors in explaining
the behavior of response variables (Kruskal (1987)). The use of information-theoretic
measures in that context dates back at least to Theil (1987), who uses a decomposition of
the Gaussian mutual information to quantify the contribution of independent explanatory
variables in multivariate regressions.1 A comprehensive treatment of the subject from
an information theory perspective is given in Retzer et al. (2009), who characterize
the importance of variables by the extent to which their use reduces uncertainty about
predicting the response variable. Another important area of application is the study
of causal relationships in the analysis of time series. Following the seminal work of
Granger (1969), the notion of causality has been associated with the question of whether
knowledge of past values of one time series helps improve the prediction of another.

While most of the early work on this topic focused on how to test for the existence and
direction of causality, Geweke (1982, 1984) show how to quantify the strength of causal
influence. Geweke’s measures are based on the magnitude of the reduction of forecast
uncertainty, measured by the mean square forecast errors of the predicted variable, due
to using past values of the causal variable. In that sense, measuring Granger causality
can be interpreted as quantifying the contribution of information by observed variables –
past observations of the cause variable, with respect to unobserved ones – the future
values of the predicted variable, conditional on a set of other observed variables – the
past values of the predicted variable.2 This is precisely the meaning of conditional
mutual information, and, as Barnett et al. (2009) show, when the joint distribution of
the variables is Gaussian, Geweke’s measures of strength of causality are equivalent to
the “transfer entropy” of Schreiber (2000), which is an information-theoretic measure of
the transfer of information between two stochastic processes.3 Extensions to non-linear
and non-Gaussian models involve replacing the forecast error variances with entropic

1See also Theil and Chung (1988) where the analysis is extended to systems of simultaneous equations,
and Soofi (1992), who applies the same ideas to determine the relative importance of predictors in logit
models.

2In his Nobel prize acceptance lecture Granger defined causality as follows: (1) The cause occurs
before the effect; (2) The cause contains information about the effect that is unique, and is in no other
variable.

3See also Pourahmadi and Soofi (2000) who use conditional mutual information to quantify the
information worth of past observations for predicting future values of univariate time series.
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measures of uncertainty (see Amblard and Michel (2011)).4

Instead of strength of causality, the purpose of the measures presented in this paper is
to quantify the amount of information that realizations of observed variables contribute
with respect to contemporaneous but unobserved realizations of some endogenous model
variables or exogenous shocks. Since mathematically there is no difference between
unobserved future realizations of observed variables and unobserved contemporaneous
realizations of latent variables, the proposed measures of information gains are analogous,
with minor modifications, to the Granger causality strength measures of Geweke (1982,
1984) in the case of linearized Gaussian DSGE models, and to non-linear Granger
causality measures in the general case.

The paper is also related to a growing literature on the feasibility of recovering
structural shocks using reduced form models. Building upon the work of Hansen and
Sargent (1980, 1991) and Lippi and Reichlin (1993, 1994), most of the research on
this topic has focused on the issue of invertibility (or fundamentalness) in structural
vector autoregressions, i.e. whether shocks from general equilibrium models can be
recovered from the residuals of VARs (see Alessi et al. (2011) and Giacomini (2013)
for useful overviews of this literature). Conditions for invertibility are discussed in
Fernandez-Villaverde et al. (2007), Ravenna (2007), Franchi and Vidotto (2013), Franchi
and Paruolo (2015)), while Giannone and Reichlin (2006) and Forni and Gambetti (2014)
discuss how to test for lack of invertibility of structural VARs. Invertibility issues that
are specific to DSGE models with news shocks are discussed in Leeper et al. (2013) and
Blanchard et al. (2013). More recently, Soccorsi (2016) and Forni et al. (2016) proposed
measures of the degree of non-invertibility, which quantify the discrepancies between
true shocks and shocks obtained using non-fundamental VARs.5 In another recent paper
Chahrour and Jurado (2017) draw a distinction between invertibility on one hand, and
what they call “recoverability” on the other, defining the latter as the feasibility of
recovering structural shocks from all available observations, not only past and present
ones. They argue that recoverability is often what matters in applied research, and
present a necessary and sufficient condition one can use to check if shocks in linear
models are recoverable.

4A concept related to Granger causality is that of Granger causal priority, which Jarociński and
Maćkowiak (2017) utilize in a recent article to show how to determine the relevant variables to be
included in Bayesian vector autoregressions.

5Simulation evidence that non-invertible VARs may in some cases produce good approximations of
the true structural shocks are provided in Sims (2012) and Beaudry et al. (2015).
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Similar to that literature, the analysis in the present paper may be used to determine
whether the shocks in a DSGE model can be recovered from a set of observed variables.
And, like in Chahrour and Jurado (2017), the analysis is based on information contained
in all available observations. Furthermore, similar to Soccorsi (2016) and particularly
Forni et al. (2016), a measure is provided of the degree to which any individual shock, or
an endogenous latent variable, can be recovered. In particular, the proposed measures
of information gains are defined with respect to a particular unobserved variable and
show how much of the prior uncertainty about it is removed due to observing a given set
of model variables. An important difference with the invertibility literature is that the
analysis here is based on the true data generating process characterized by a structural
model, and not on approximations of it, such as a VAR. The proposed information
gain measures are, in their general form, meaningful and useful when applied to non-
linear DSGE models, while the invertibility conditions and measures in the existing
literature are specific to linearized models. In the context of linearized DSGE models,
the information gain measures could be interpreted as upper bounds on the amount of
information about a shock (or the degree of information sufficiency in the terminology of
Forni et al. (2016)) available in a VAR.

More importantly, while the existing research on invertibility is concerned with the
usefulness of VAR–based tools for empirical validation of structural models, the purpose
of the analysis presented here is to understand the properties of DSGE models in terms of
how information transfers between observed and unobserved model variables. Therefore,
identifying the main sources of information is of greater interest than what the total
amount of information about a given shock is. To that end, I define and apply measures
of conditional information gains that quantify the amount of additional information
contributed by a variable or several variables, given the information contained in another
set of observed variables. As the analysis of the model considered in the application
section shows, the conclusions one draws may be very different depending on what the
conditional variables are. For instance, asset prices are found to be unconditionally very
informative with respect to wage markup news shocks in the model of Schmitt-Grohé
and Uribe (2012), but conditional on observing other macro variables, the information
gains are small. At the same time, asset prices may be conditionally quite informative
about certain productivity news shocks even though the unconditional information
gains are close to zero. These findings are a reflection of the fact that information
contained in different variables is not necessarily independent and could be overlapping
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in some cases while complementary in others. A somewhat extreme example of this
phenomenon is the finding that output growth is informationally completely redundant
in the model of Schmitt-Grohé and Uribe (2012). In general, information contained in
different variables tends to be partially redundant with respect to some latent variables
and complementary with respect to others. A novel measure of pairwise information
complementarity is introduced in the paper and used to determine the sign and assess
the degree of complementarity among observed variables with respect to unobserved ones.
In the application section, the measure is used to clarify the nature of the interactions
between asset prices and other macroeconomic variables in terms of information they
convey with respect to news shocks in the Schmitt-Grohé and Uribe (2012) model.

3 Measures of information and information gains

A DSGE model completely characterizes the joint probability distribution of a ny vector
of observed endogenous variables y, and a nz vector of unobserved endogenous variables
and exogenous shocks z. Note that in practice the dimension of each of these vectors is
a function of a sample size T . For notational simplicity I suppress the dependence on T

throughout this section unless it is necessary to make it explicit. The joint distribution
function of y and z is parameterized in terms of a nθ vector of structural parameters
θ, characterizing technology, preferences, and the properties of the exogenous variables.
Both θ and z are typically unknown and unobserved, and the only source of empirical
information about them are the measurements of y. The purpose of this section is to
show how to quantify the amount of information contained in a sample of data, and how
to evaluate the contributions of individual observed variables.

One way to approach these questions would be to adopt a Bayesian perspective and
treat z as part of the parameter vector to be estimated. Then, the amount of information
provided by a sample would be with respect to (θ, z) jointly. While conceptually feasible,
this approach would be very challenging in practice in the present context, given the
large dimension of z and the complicated form of the conditional distribution of (θ, z)
given y. Therefore, in most of this section I treat θ as known and measure sample
information and information gains about z conditional on θ. At the end of the section I
discuss the issue of measuring sample information about θ.
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3.1 Information about latent variables

A well-established measure of information about random variables is the information-
theoretic entropy introduced by Shannon (1948). Entropy is a measure of the uncertainty
associated with a random variable, and the amount of information about that variable is
measured as the reduction in uncertainty, i.e. entropy, relative to some base distribution.
Specifically, let f(z) be the probability density function of z. For notational simplicity
throughout this subsection I suppress the dependence on θ. The entropy H(z) of f(z) is
defined as

H(z) = −
∫
f(z) ln (f(z)) dz = −E ln f(z). (3.1)

Similarly, if f(y, z) is the joint probability density function of y and z, the joint entropy
H(y, z) of f(y, z) is defined as

H(y, z) = −
∫
f(y, z) ln (f(y, z)) dydz = −E ln f(y, z) (3.2)

The difference between joint and marginal entropies

H(z|y) = H(y, z)− H(y) (3.3)

defines the conditional entropy of z given y. It measures the amount of uncertainty about
z that remains once y is observed. Note that H(z|y) can be computed as in (3.1) using
the conditional density f(z|y) of z given y. It can be shown (see for instance Granger
and Lin (1994)) that H(z) ≥ H(z|y) with equality if and only if f(y, z) = f(y)f(z).
Hence, unless y and z are independent, observing y provides information about z. The
amount of uncertainty about z that is removed by observing y is known as the mutual
information of y and z, i.e.6

I(y, z) = H(z)− H(z|y). (3.4)

I(y, z) is a measure of information in the sense that it quantifies the expected reduction
in uncertainty about one of the variables due to observing the other one. From H(z) ≥

6Mutual information is defined as I(y, z) =
∫
f(y, z) ln f(y, z)

f(y)f(z)dydz and measures the distance

between the joint distribution of y and z and the distribution when the variables are independent. See
Cover and Thomas (2006) for more details on the properties of entropy and mutual information.
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H(z|y) it follows that mutual information is positive unless y and z are independent
in which case it is zero. On the other hand, if the variables are perfectly dependent i.e.
there exists a one-to-one function g such that z = g(y), observing y is equivalent to
observing z. In that case I(y, z) =∞ (see Granger and Lin (1994, Theorem 2)). It is
common in practice to normalize the measure to be in the interval [0, 1]. For instance,
Joe (1989) proposed the following transformation

I∗(y, z) = 1− exp (−2I(y, z)) (3.5)

as a generalized measure of dependence between two or more random variables. The
same transformation is used in Granger and Lin (1994) as a criterion for determining the
number of significant lags in nonlinear time series models. The reason why the particular
form in (3.5) is chosen is that, for a bivariate Gaussian distribution, I∗(y, z) = ρ2, where
ρ is the linear correlation coefficient between y and z. Furthermore, when y and z are
jointly Gaussian, the transformation in (3.5) results in the following expression7

I∗(y, z) = |Σz| − |Σz|y|
|Σz|

, (3.6)

where Σz is the covariance matrix of the marginal probability density of z, and Σz|y

is the covariance matrix of the conditional probability density of z given y. Hence,
for Gaussian distributions, I∗(y, z) measures the reduction in the generalized variance
(Wilks (1932)) of vector z due to observing vector y, as a fraction of the unconditional
generalized variance of z. However, as Peña and Rodŕıguez (2003) and others have noted,
the generalized variance is not a dimensionless measure of the uncertainty of a (Gaussian)
random vector. For instance, if Σz is a nz × nz diagonal matrix with σ2 < 1 on the
diagonal, |Σz| = σ2nz , implying exponential decline of uncertainty as the dimension of z
grows. A dimensionless measure of variability proposed in Peña and Linde (2007) is the
effective variance Ve(z), defined as

Ve(z) = |Σz|1/nz . (3.7)
7This follows from the result that the entropy of a nv–dimensional Gaussian variable v ∼ N (µv,Σv)

is H(v) = 0.5 (ln(2πe)nv + ln|Σv|). Therefore, the mutual information of y and z is I(y, z) = H(z)−
H(z|y) = .5 ln

(
|Σz|

|Σz|y|

)
.
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When the elements of z are independent, i.e. Σz is diagonal, the effective variance is
equal to the geometric average of the variances of the elements of z. If, in addition,
the variances are identical, the effective variance is equal to that common variance, and
is therefore independent of T . In the general case, Ve(x) is equal to the geometric
average of the eigenvalues of Σ. Adopting the effective variance as a scalar measure of
the uncertainty associated with Gaussian distributions yields the following measure of
the information gained about z from observing y:

IGz(y) =
(
|Σz|1/nz − |Σz|y|1/nz

|Σz|1/nz

)
× 100. (3.8)

The interpretation of IGz(y) is the following: it measures the reduction in uncertainty
about vector z due to observing vector y, as a percent of the unconditional (prior)
uncertainty about z.

The measure in (3.8) can be generalized for non-Gaussian distribution by noting that
Ve(x) is equal to a particular transformation of the entropy H(z) when z is Gaussian.
Specifically, Shannon (1948) defined the entropy power N(z) of a vector z with entropy
H(z) to be

N(z) = 1
2πe exp

( 2
nz

H(z)
)
, (3.9)

which for z ∼ N (µz,Σz) implies N(z) = |Σz|1/nz . Similarly, the conditional entropy
power of z given y is N(z|y) = |Σz|y|1/nz . Note that, unlike entropy which can be
negative (for continuous variables), entropy power is always non-negative, and is therefore
a more appealing measure of uncertainty. Thus, IGz(y) can be defined for non-Gaussian
distribution as in (3.8), replacing the effective variance with entropy power. It can also
be expressed in terms of mutual information using the following transformation:

IGz(y) =
(

1− exp
(
− 2
nz

I(y, z)
))
× 100. (3.10)

Hence IGz(y) is a simple modification of the transformation in (3.5) that allows infor-
mation gains to be compared for vectors of different dimensions.

In the context of DSGE models, we are often interested in the information content of
one or more observed variables with respect to a particular latent variable. Hence, the
relevant information gain measure is of the form IGzj(yi), where zj is a nzj sub-vector
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of z containing the realization of the latent variable we are interested in, and yi is
a nyi sub-vector of y containing the observations of the variable or variables whose
information content we want to assess. The required quantities, i.e. entropy (3.1) and
mutual information (3.4), are obtained in exactly the same way as before, replacing
the joint distributions with their marginal counterparts. Furthermore, now we can
distinguish between conditional and unconditional information gains from knowing yi

with respect to zj. The unconditional information gain is given as before by IGzj(yi)
and measures the reduction in uncertainty about zj due to observing yi relative to
observing no data at all. It is often more interesting to know the marginal contribution
of yi, given the information about zj contained in other observed variables. One way to
define a conditional information gain of yi with respect to zj, given yi = y \ yi is to
replace the mutual information I(yi, zj) in (3.10) with the conditional mutual information
I(yi, zj|yi) = H(zj|yi)− H(zj|y); this would tell us how much of the uncertainty about
zj that remains after yi is observed is removed by observing also yi.8 Note, however, that
the gains would be relative to the conditional uncertainty about zj given yi. Therefore,
that measure is not comparable to IGzj (yi) in (3.10), which is in terms of percent of the
unconditional uncertainty about zj. A conditional measure, comparable to (3.8) in the
Gaussian case, can be defined as

IGzj(yi|yi) =
(
|Σzj |yi |1/nzj − |Σzj |y|1/nzj

|Σzj |1/nzj

)
× 100. (3.11)

The interpretation of IGzj(yi|yi) is the following: it shows the amount of uncertainty
about zj left after observing yi that is removed by observing also yi, as a percent of
the unconditional uncertainty about zj. As before, for non-Gaussian distributions the
(conditional) effective variances are replaced with the respective (conditional) entropy
powers.

Note that, while the information gain measures in (3.8) and (3.11) are defined with
respect to the T -dimensional vector of all realizations of a given latent variable, we can
similarly compute information gains with respect to smaller subsets of realizations. For
instance, we can define information gains with respect to an individual realization of the
latent variable at a given point in time. In that case we use the marginal conditional
distributions of that realization for different conditioning variables. If the distribution is
Gaussian, the conditional variances that appear in the information gain measures may be

8The notation A = B \ C is used to define A as the subset of B that excludes the set C.
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obtained by using the Kalman smoother. Note, however, that the Kalman smoother only
provides the diagonal elements of the conditional covariance matrices in (3.8) and (3.11).
In general, these matrices have non-zero off-diagonal entries since the elements of zj may
be conditionally dependent even if the latent variable itself is an i.i.d. process. Therefore,
the standard Kalman smoother cannot be used to evaluate IGzj (yi) or IGzj (yi|yi) when
zj contains two or more realizations of a latent variable. Instead, for linearized Gaussian
models, like the one analyzed in the next section, I use the fact that y can be expressed
as an affine function of z, which implies that the conditional distribution of any subset of
z given y (or any subset of y) is also Gaussian. Consequently, the required covariances
matrices are simple to obtain using the familiar formulas for moments of conditional
Gaussian distributions. For more details, see Section A.1 of the Online Appendix.9

The use of the information gain measures presented above can be summarized as
follows: the unconditional measure (3.8) tells us how informative a set of observed
variables is as a whole with respect to a given unobserved endogenous variable or
exogenous shock. If IGzj (y) ≈ 0 the information about zj after observing y is nearly the
same as prior to observing any data. For instance, saying that standard macroeconomic
variables are not very informative about news shocks can be expressed as the unconditional
information gains of such variables (as a set) with respect to news shocks being close to
zero. On the other hand, if IGzj (y) = 100, observing y is sufficient to completely recover
the realizations of the variable represented by zj. The conditional information gain
measure (3.11) can be used to determine how much of the overall information content
of y is contributed by each individual variable or subsets of variables. Therefore, the
claim that asset prices contribute a lot of additional information about news shocks
can be verified by showing that the information gains of asset prices with respect to
news shocks conditional on standard macroeconomic variables are large. In general, by
comparing conditional information gains, one could rank observed variables in terms of
their relative informativeness with respect to each latent variable.

As mentioned in the Introduction, in some cases questions about the informational
importance of observed variables may refer to information about unknown parameters
related to a given latent variable, instead of information about the realizations of

9An example of a situation where the uncertainty for more than two but less than T realizations is
of interest is having a latent variable whose realizations can be recovered fully after some point in time
T1 < T . This could be due to uncertainty about the initial state that propagates through the first few
periods. In that case, the conditional variance of the first T1 realizations is positive while that of the
last T − T1 is zero.
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that variable. Informative variables in that sense are those which, if observed, would
substantially reduce the estimation uncertainty of the parameters in question. In the
remainder of this section I discuss how to assess the relative importance of the observed
variables with respect to model parameters.

3.2 Information about parameters

The purpose of this section is to show how to evaluate the amount of information observed
variables contribute with respect to the vector θ as a whole, as well as individual
parameters. I approach this as a missing data problem (see e.g. Dempster et al.
(1977) and Palm and Nijman (1984)), and compare the expected information content
of complete and incomplete samples. In the present context, having a complete sample
means observing an nyT

vector yT , while having an incomplete sample means observing
yiT , that is, all variables except the one indexed by i. Intuitively, the distribution of the
incomplete sample is less informative than the distribution of the complete sample in
the sense that the uncertainty about θ is reduced to a lesser extent as a consequence of
observing yiT compared to observing yT (see Rao (2002, p.331)).10 A standard measure of
the expected amount of information contained in a distribution is the Fisher information
matrix (hereafter denoted by FIM). Asymptotically, i.e. as T tends to infinity, the
inverse of the FIM is equal to the covariance matrix of the distribution of the ML
estimator of θ. Hence, the expected loss of information can be measured by comparing
the asymptotic variances of MLE using complete and incomplete samples. Furthermore,
by the Cramér-Rao theorem the inverse of FIM is a lower bound on the covariance matrix
of any unbiased estimator of θ. Thus, the loss of information can also be assessed as
a function of the sample size, by measuring the differences between Cramér-Rao lower
bounds (hereafter denoted by CRLB) with complete and incomplete samples.

For consistency with the previous section, I evaluate the contributions of observables
in terms of efficiency gains, i.e. the reduction in expected estimation uncertainty about
parameters when a variable (or a group of variables) is observed, relative to when it is
not observed. Specifically, let Ωθ(y) and Ωθ(yi) be the (asymptotic or finite-sample)
CRLBs for θ associated with the complete and incomplete samples. Note that, for
large T , the MLE of θ is an approximately Gaussian random vector with mean equal
to the true value of θ, and covariance matrix given by the CRLB. Hence, |Ωθ|1/nθ can

10See Meng and Xie (2014) for an interesting discussion of why this is true for likelihood based
estimation approaches, but not in general.
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be interpreted as a large-sample approximation of the entropy power of the MLE of θ.
Following the discussion in the previous section, I define the efficiency gain with respect
to θ from observing yi relative to observing yi as follows:

EGθ(yi|yi) =
(
|Ωθ(yi)|1/nθ − |Ωθ(y)|1/nθ

|Ωθ(yi)|1/nθ

)
× 100. (3.12)

The interpretation is similar to that of the information gains in the previous section.
EGθ(yi|yi) shows the increase in (asymptotic) efficiency of the MLE of θ due to observing
yi as a percent of the estimation efficiency when only yi is observed. I use efficiency
gain instead of information gain to emphasize the fact that, unlike the previous section,
the gains here are in terms of the uncertainty associated with the distribution of the
estimator of θ, instead of the parameter itself, which is non-random. For details on how
to evaluate the FIM for linearized Gaussian models, like the one analyzed in the next
section, see Section A.2 of the Online Appendix.

Wei (1978a,b) uses a similar measure to assess the information loss due to aggregation
of time series. The only difference is that he does not exponentiate the determinants of
the asymptotic covariance matrices of MLE for aggregated and disaggregated samples.
As explained earlier, the measure in (3.12) has the advantage of being comparable
for vectors of different sizes. In particular, suppose we are interested in the marginal
contribution of information from a variable with respect to individual parameters. Let
Ωk,k be the k-th diagonal element of Ωk,k, i.e. the CRLB for θk. Then, the efficiency
gain with respect to θk from observing yi is given by

EGθ
k
(yi|yi) =

(
Ωk,k
θ (yi)−Ωk,k

θ (y)
Ωk,k
θ (yi)

)
× 100. (3.13)

In the context of DSGE models, the efficiency gains measure (3.13) is used in Iskrev
(2010) to assess the importance of different observed variables with respect to individual
parameters. An equivalent measure, formulated in terms of efficiency loss instead of
efficiency gain, is used in Palm and Nijman (1984) to assess the loss of efficiency with
respect to individual parameters due to missing observations in dynamic regression
models. More broadly, FIM-based criteria similar to (3.12) and (3.13) are widely used in
the experiment design literature to select an optimal design, i.e. a design which maximizes,
according to a given criterion, the amount of information that an experimenter can
expect to learn about the parameters through an experiment (see e.g. Silvey (1980) and
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Pronzato and Pázman (2013)).
Two further remarks are worth making at this point. First, the efficiency gain measure

in (3.13) is only meaningful when parameter θk is identified, at least locally, from the
full set of observables y. That is, when Ωk,k

θ (y) is finite. It is possible that excluding
some variable yi from y makes θk unidentified so that Ωk,k

θ (yi) =∞. In that case we
can set EGθ

k
(yi|yi) = 100%, meaning that θk becomes identified when yi is added to

the set of observed variables. Second, the efficiency gain measure is not limited to use
only with models estimated by MLE. From the so-called Bernstein-Von Mises theorem
(see e.g. Walker (1969), Chen (1985), Kim (1998)), we know that Bayesian estimation
procedures asymptotically inherit the properties of the classical MLE, i.e. the posterior
distribution is asymptotically normal, centered at the MLE with covariance matrix
equal to the inverse of the FIM. Furthermore, the asymptotic normality implies that the
posterior mean and mode are asymptotically equal and converge to the MLE. Therefore,
the efficiency gain measure could be evaluated at either one of these points depending
on which parameter values one wishes to focus on. Of course, in practice the prior
distribution does play a role, contributing information about the parameters beyond the
information contained in the likelihood function. However, information in the prior is
independent from that in the sample and is therefore irrelevant to the question about
the relative contributions of information by different variables with respect to estimated
parameters.

4 Application: The information content of asset
prices

This section evaluates the contribution of information by asset price variables in a DSGE
model containing news shocks. In particular, I am interested in the validity of the
following two claims: (1) standard macroeconomic variables are uninformative about
news shocks; and (2) asset prices contribute a lot of information about news shocks.
Clearly it is not possible to give a single general answer as to whether these statements
are true or not under all circumstances. Instead, the main purpose here is to demonstrate
how the measures from Section 3 can be used to study the information properties of
observables in the context of a particular environment. The model I consider is taken
from Schmitt-Grohé and Uribe (2012) (SGU henceforth). It is a closed economy real
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business cycle model augmented with real rigidities in consumption, investment, capital
utilization, and wage setting. The details of the model are given in the Online Appendix.
Here I only describe those of its feature what would directly relevant for the analysis
which follows. Firstly, the model has seven fundamental shocks: to neutral productivity
(stationary and non-stationary), investment-specific productivity (stationary and non-
stationary), government spending, wage markups and preferences. Each one of the shocks
is driven by three independent innovations, two anticipated and one unanticipated. More
concretely, the process governing shock xt is given by

ln(xt/x) = ρx ln(xt−1/x) + σ0
xε

0
x,t + σ4

xε
4
x,t−4 + σ8

xε
8
x,t−8, (4.1)

where εjx,t for j = 0, 4, 8 are independent standard normal random variables. The
anticipated innovations ε4

x,t−4 and ε8
x,t−8 are known to agents in periods t− 4 and t− 8,

respectively. Thus, they are interpreted as news shocks. SGU estimate the model
using US data on the growth rates of output, consumption, investment, government
expenditure, the relative price of investment, total factor productivity, and hours worked.
In addition to these variables, the model makes predictions about the behavior of two
asset price variables: the value of the firm and the risk-free real interest rate. In
estimation, the growth rate of the value of the firm can be matched to the growth rate of
the real per capita value of the stock market. Similarly, data on the risk-free real interest
rate can be obtained by deflating the nominal rate on the three-month Treasury bill by
the inflation rate implied by the GDP deflator. The reason SGU give for not using asset
price data is that models like the one sketched here are not well suited for explaining
the behavior of these variables. In other words, variables like the stock price index are
not a good empirical match for the theoretical concept represented by the value of the
firm.11 Here, I abstract from the issue of whether value of the firm and the risk-free
real interest rate have adequate empirical counterparts. The question I ask is whether
observing these variables, if such data were available, would provide a significant amount
of additional information with respect to news shocks. This question is addressed next.

11Some authors, such as Avdjiev (2016), who use asset prices to estimate models with news shocks,
deal with this discrepancy by assuming that the data are contaminated by measurement errors. I
replicate the analysis in this section for the model in Avdjiev (2016) in the Online Appendix.
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4.1 Information about news shocks

Following the notation in Section 3, let y be a vector collecting the observations of all
observable variables (including vf and r), and ȳ be the vector of observations of the
variables used in the baseline estimation of SGU, i.e. ȳ = y \ (vf , r). Note that y is
a T × 9 dimensional vector, and ȳ is a T × 7 dimensional vector. The purpose of this
section is to evaluate the information gains from observing vf , r, or both, with respect
to news shocks, which in this model are represented by the anticipated innovations to
the seven fundamental shocks. There are 14 such innovations, each one of which is a T
dimensional vector. I set T = 207, which is the sample size in SGU.

SGU solve the model by log-linear approximation of the equilibrium conditions
around steady state. The linearity of the solution together with the assumption that
the structural innovations and the measurement error in output growth are Gaussian,
implies that the joint distribution of (any subset of) the innovations, shocks, state and
observed variables is also Gaussian. This fact is used in SGU to compute the likelihood
function required for estimation of the model parameters with classical and Bayesian
methods. In addition, it implies that the information gains measures discussed in Section
3.1 can be computed analytically for a given set of parameter values. In the analysis
which follows I fix the parameter values at the MLE reported in Schmitt-Grohé and
Uribe (2012) (see Table B1 in the Online Appendix). As I show in the Online Appendix,
the main conclusions do not change in any significant way if the mean or the mode of
the posterior distribution are used instead.

Table 1 presents the results for all innovations – anticipated and unanticipated. The
first two columns show the unconditional gains from observing ȳ, and the additional gains
from observing both vf and r, conditional on ȳ being observed. Note that the information
gains from observing all nine variables are given by IGε(y) = IGε(ȳ) + IGε(vf , r|ȳ). The
results show that none of the innovations, anticipated or unanticipated, can be fully
recovered from the observed variables, even when vf and r are among them. The largest
reduction of uncertainty is with respect to the unanticipated stationary investment-
specific productivity innovations (ε0

zI ) – by about 94%, and the unanticipated stationary
neutral productivity innovations (ε0

z) – by about 78%. In terms of anticipated innovations,
i.e. news shocks, the information gains are largest with respect to the 8–quarter ahead
preference shock – about 63%, and the 4–quarter ahead wage markup shock – about 58%.
However, the contribution of information by asset prices with respect to these shocks
is fairly modest. The largest gains due to observing vf and r are with respect to news
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Table 1: Information content of asset prices: innovations

innovation IG(ȳ) IG(vf , r|ȳ) IG(vf |ȳ) IG(r|ȳ) IG(vf ) IG(r)

ε0
µa non-stat. investment-specific prod. 26.3 3.7 3.5 0.1 0.2 0.1
ε4
µa non-stat. investment-specific prod. 4q 38.4 3.2 3.0 0.3 0.1 0.1
ε8
µa non-stat. investment-specific prod. 8q 34.0 3.3 3.1 0.3 0.1 0.1
ε0
µx non-stat. neutral prod. 26.9 19.9 14.6 4.3 18.4 2.2
ε4
µx non-stat. neutral prod. 4q 2.1 8.6 2.3 5.0 0.6 1.4
ε8
µx non-stat. neutral prod. 8q 2.3 8.9 2.0 5.6 0.6 1.6
ε0
zI stat. investment-specific prod. 84.0 9.5 7.0 5.0 0.9 0.9
ε4
zI stat. investment-specific prod. 4q 10.3 23.3 17.8 8.3 0.8 1.7
ε8
zI stat. investment-specific prod. 8q 16.5 33.3 26.7 11.1 1.6 2.8
ε0
z stat. neutral prod. 71.7 6.5 2.6 3.3 42.2 8.5
ε4
z stat. neutral prod. 4q 2.6 11.9 1.5 8.9 0.8 2.3
ε8
z stat. neutral prod. 8q 2.7 12.0 1.5 9.0 0.8 2.3
ε0
µ wage markup 9.7 27.4 1.9 21.6 3.4 0.6
ε4
µ wage markup 4q 52.9 5.0 1.7 3.5 15.1 42.3
ε8
µ wage markup 8q 34.4 4.6 2.3 2.5 9.8 27.5
ε0
g government spending 28.8 2.6 0.3 2.0 0.7 0.1
ε4
g government spending 4q 47.9 1.9 0.5 1.1 0.6 1.8
ε8
g government spending 8q 18.6 0.9 0.3 0.5 0.3 0.7
ε0
ζ preference 16.3 5.3 1.6 3.2 0.6 0.1
ε4
ζ preference 4q 16.0 1.3 0.8 0.2 0.3 0.9
ε8
ζ preference 8q 60.7 2.7 1.2 0.7 1.2 3.4

Note: ȳ contains all observed variables (y) except asset prices (vf and r). The information gain
IGε(x) measures the reduction in uncertainty about variable ε due to observing variable x, in
per cent of the prior (unconditional) uncertainty. The conditional information gain IGε(x|z) =
IGε(x, z)− IGε(z) measures the additional reduction in uncertainty from observing x given that z
is observed.

about the stationary investment-specific productivity shocks. They are about 23% with
respect to ε4

zI and 33% with respect to ε8
zI . Other news shocks for which the contribution

of asset prices is non-trivial are the stationary and non-stationary neutral productivity
shocks. The gains are about 12% and 9%, respectively. The relative contributions of the
two asset price variables can seen from the third and fourth columns of the table, which
report the additional gains from observing either vf or r, conditional on ȳ being observed.
Even though both asset price variables contribute a substantial amount of information
about ε4

zI and ε8
zI , the gains from observing vf are significantly larger. At the same time,

r is the more informative of the two variables with respect to the news components of the
stationary and non-stationary neutral productivity shocks. The last two columns show
the information gains from observing either vf or r, relative to having no data at all.
Interestingly, the gains are very small with respect to most news shocks, including the
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stationary investment-specific productivity shocks and the neutral productivity shocks.
This means that almost all of the information which asset prices contribute with respect
to these shocks comes from the interactions of vf and r with variables in ȳ. That is, the
information comes from cross-moments of asset prices and macro variables rather than
the own moments of asset prices. Note that the opposite is true in the case of the news
components in the wage markup shock. The unconditional gains from observing vf or r
are much larger than the conditional gains. This implies that most of the information
provided by either one of the asset price variables is also contained in other observed
variables.12

The results in Table 1 raise the question of how vf and r compare to other observables
in terms of the amount of information they provide about news shocks. To answer this
question, I compute conditional information gains for each variable in y. That is, I
evaluate IGε(x|yx) where x is one of the nine observables, and yx contains all observables
(including vf and r) except x. The results are shown in Figure 1. Note that hours worked
and TFP each contribute more information with respect to the stationary investment-
specific productivity news shocks compared to vf or r. The relative price of investment
is by far the most informative variable with respect to the news components in the
non-stationary investment-specific productivity shocks, while government expenditure
and consumption are, respectively, the most informative variables about government
spending and preference news shocks. The anticipated innovations to the stationary
neutral productivity shocks are the only news shocks for which an asset price variable,
specifically the risk-free rate, contributes significantly more information than any other
variable.

An important conclusion that emerges from the results in Table 1 and Figure 1 is
that the variables’ contributions of information could depend on what other variables are
observed. In some cases, the amount of additional information brought by a variable is
increased due to presence of other variables; in other cases the contribution is diminished.
For instance, as we saw in Table 1, vf alone provides very little information about ε4

zI

and ε8
zI . Conditional on observing all seven macro variables, however, the contribution

of vf is substantial. The opposite is true with respect to ε0
µx and ε0

z. This suggests that
there exists a degree of positive information complementarity between vf and (some
of the) macro variables in the first case, and negative complementarity, or information

12The unanticipated innovation to the non-stationary neutral productivity shock ε0
µx is an example of a

third possibility – where the information gains from observing vf are relatively large, both conditionally
and unconditionally.
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Figure 1: Conditional information gains at MLE of SGU.

redundancy, in the second. To find out how vf interacts with each one of the macro
variables, it is helpful to define a measure of (conditional) information complementarity
between two variables. Specifically, let x be a member of ȳ and ȳx = ȳ \ x. Then, the
conditional information complementarity with respect to variable ε between vf and x

can be defined as:

ICε(vf , x|ȳx) = IGε(vf , x|ȳx)
IGε(vf |ȳx) + IGε(x|ȳx)

− 1. (4.2)

Negative values indicate negative complementarity, or information redundancy, between
vf and x, and positive values indicate positive complementarity between the two vari-
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ables. Since the information gain is non-negative, we have ICε(vf , x|ȳx) ≥ −1/2, with
equality when vf and x are (conditionally on ȳx) functionally dependent, in which case
IGε(vf , x|ȳx) = IGε(vf |ȳx) = IGε(x|ȳx).13 A lack of information complementarity, i.e.
ICε(vf , x|ȳx) = 0 could occur if vf and x are (conditionally on ȳx) independent, and
hence IGε(vf , x|ȳx) = IGε(vf |ȳx) + IGε(x|ȳx). Note that instead of ȳx in (4.2) the
conditioning could be with respect to any other set of variables, including the empty set
which would show the unconditional complementarity between vf and x.

Using Table 1, we can determine the degree of complementarity between vf and r,
conditionally on the seven macro variables. There is a positive complementarity with
respect to the preference shock, the stationary and non-stationary neutral productivity
shocks, and the government spending shock. At the same time there is a negative
complementarity, or redundancy of information, with respect to the stationary and
non-stationary investment-specific news shocks, and wage markup shock. Overall, the
degree of complementarity, both positive and negative, is relatively weak.

Figures B1 - B4 in the Online Appendix show results for conditional and unconditional
information complementarity between vf and r and each one of the macro variables.
The main findings can be summarized as follows: (1) both vf and r display very strong
conditional complementarity with h and tfp, and relatively weaker, but still significant
complementarity with c; (2) The complementarity is positive with respect to the news
components in the stationary and non-stationary investment specific shocks, and, in the
case of h and c, the stationary and non-stationary neutral productivity shocks. The
complementarity is negative with respect to news about the wage markup and preference
shocks; (3) The magnitude and even the sign of the information complementarity may
change depending on the conditioning variables. For instance, unconditionally, vf is
strongly complementary only with tfp, and the complementarity is positive with respect
to all news shocks except the two neutral productivity news shocks. r, on the other hand,
is unconditionally strongly complementary primarily with h, and the complementarity is
positive with respect to all news except the wage markup news shocks; (4) Conditionally,
there is zero information complementarity between either vf or r, on one hand, and y,
on the other.

As noted earlier, it is not possible to recover without error the 21 anticipated and
unanticipated innovations from either 7 or 9 observed variables. In fact, in many cases

13Note that IGε(vf , x|ȳx) ≥ max (IGε(vf |ȳx), IGε(x|ȳx)) and IGε(vf , x|ȳx) = 0 implies IGε(vf |ȳx) =
IGε(x|ȳx) = 0. In that case IGε(vf ,x|ȳx)

IGε(vf |ȳx)+IGε(x|ȳx) = 0
0 , which is taken to be equal to 1.
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Table 2: Information content of asset prices: shocks

shock IG(ȳ) IG(vf , r|ȳ) IG(vf |ȳ) IG(r|ȳ) IG(vf ) IG(r)

µa nonstationary investment-specific prod. 100.0 0.0 0.0 0.0 0.2 0.2
µx nonstationary neutral prod. 30.8 16.8 12.2 4.1 19.2 2.6
zI stationary investment-specific prod. 86.4 11.0 10.6 2.5 2.1 2.9
z stationary neutral prod. 76.5 5.8 4.1 1.5 43.7 8.8
µ wage markup 98.2 1.4 0.8 1.0 28.7 68.1
g government spending 98.8 0.3 0.2 0.1 1.5 1.9
ζ preference 98.3 1.3 0.7 0.5 2.2 3.7

Note: see note to Table 1

the information gains are small, meaning that the posterior uncertainty remains very
close to the prior uncertainty. There are, however, only 7 structural shocks and it is
natural to expect that they are easier to recover than the innovations. This is indeed the
case, as can be seen in Table 2, which shows results from the same analysis as in Table
1, now applied to the structural shocks. With 9 observed variables the information gains
exceed 97% for 5 of the shocks. The two shocks for which the gains are relatively small
are the non-stationary neutral productivity – around 48%, and the stationary neutral
productivity – around 82% with 9 observed variables. The asset price variables provide
a significant amount of additional information with respect to the non-stationary neutral
productivity and the stationary investment-specific productivity shocks. Most of these
gains are due to information in vf . The information gains are 100% with respect to
the non-stationary investment-specific productivity, meaning that the realizations of µat
can be completely recovered from the observed variables. This is a consequence of the
assumption that the technology which converts consumption into investment goods is
linear. As a result, in equilibrium the growth rate of the relative price of investment is
equal to non-stationary investment-specific productivity shock. Hence, observing the
price of investment alone is sufficient to fully recover µat for all t. None of the other
shocks can be fully recovered from the observed variable, although the information gains
exceed 99% in the case of wage markup, government expenditures, and preference shocks.

4.2 Information about parameters

This section evaluates the information content of asset prices with respect to the news
shock–related parameters in the model. It supplements the analysis in Schmitt-Grohé and
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Uribe (2012) who show that the parameters are identified from the second-order moments
of the seven variables used in estimation.14 It is clear that having additional observed
variables would increase the amount of information. The purpose of the following analysis
is to provide a quantitative assessment of the size of the gains from observing vf , r, or
both, and to compare them to the information gains from other observables.

As discussed in Section 3.2, the information content of a variable (or a set of variables)
x with respect to estimated parameters is measured in terms of efficiency gains, which
are computed using the parameter CRLBs with and without x. The differences between
the values of the bounds reflect the information content of the model-implied restrictions
on the joint distribution of x and the other observables. Hence, parameters for which
these restrictions are more informative will see a greater reduction in the values of their
lower bounds, i.e. larger efficiency gains.

The results are presented in Table 3.15 As also discussed in Section 3.2, the gains
are in terms of reduction in uncertainty as a per cent of the uncertainty conditional on
observing ȳ. Overall, the efficiency gains are substantial, in the order of between 90%
and 97% for parameters of news shocks when both vf and r are included. The gains are
smaller but still significant when only one of the asset price variables is observed, and
tend to be larger if that variable is vf . These results seem to suggest that asset prices
are indeed very informative with respect to news shock–related parameters. However,
this does not imply that vf and r are more informative than other observables. To find
out if they are, one has to compare the efficiency gains from observing asset prices to
the gains from other variables. Figure 2 does that for each one of the nine variables
in y. Note that, unlike in Table 3, the efficiency gains are now relative to eight, not
seven, observables. For instance, the gains from observing r are relative to observing all
other variables, including vf . As a result, they are generally much smaller than before,
especially with respect to news shocks parameters. This means that once vf is observed,
r adds relatively little new information about these parameters. At the same time,
the efficiency gains due to vf remain substantial, although not as large as in Table 3.
Comparing the results across all variables shows that h and tfp tend to be as informative
with respect to news shocks–related parameters as vf and r. Only in the cases of the
neutral productivity shocks – both stationary and non-stationary, are the asset price

14Even though Schmitt-Grohé and Uribe (2012) de-mean the data, this does not result in loss of
information since all parameters for which first-order moments are informative are assumed to be known,
i.e. are calibrated and not estimated.

15The results for all parameters can be found in Table B3 of the Online Appendix.
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Table 3: Efficiency gains (%)

parameter vf , r vf r

σ0
z std. stationary neutral productivity 87 59 83
σ4
z std. stationary neutral productivity q4 93 73 72
σ8
z std. stationary neutral productivity q8 90 73 64
σ0
µa std. non-stationary investment-specific productivity 95 95 43
σ4
µa std. non-stationary investment-specific productivity q4 97 96 74
σ8
µa std. non-stationary investment-specific productivity q8 96 96 68
σ0
g std. government spending 97 80 95
σ4
g std. government spending q4 91 89 52
σ8
g std. government spending q8 91 89 55
σ0
µx std. non-stationary neutral productivity 78 50 67
σ4
µx std. non-stationary neutral productivity q4 94 78 71
σ8
µx std. non-stationary neutral productivity q8 90 74 58
σ0
µ std. wage markup 99 70 97
σ4
µ std. wage markup q4 90 84 52
σ8
µ std. wage markup q8 90 85 48
σ0
ζ std. preference 98 89 97
σ4
ζ std. preference q4 90 88 39
σ8
ζ std. preference q8 91 88 50
σ0
zI std. stationary investment-specific productivity 92 91 66
σ4
zI std. stationary investment-specific productivity q4 96 93 81
σ8
zI std. stationary investment-specific productivity q8 92 88 72

Note: The efficiency gain EGθi
(x|ȳ), for (1) x = (vf , r), (2) x = vf , or (3) x = r, is

defined as the reduction in the value of CRLB for θi when all variables are observed,
as a per cent of the value of the CRLB when all variables except those in x are
observed.
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variables the most informative ones, with tfp being close next best. Therefore, we can
conclude that, although very informative about most model parameters, the two asset
price variables in this model are not in any way uniquely important for the identification
of news shocks–related parameters.

Redundancy of output. An interesting result that emerged from the above analysis
is that output growth data does not contribute any additional information with respect
to either latent variables (i.e. innovations and shocks) or the free parameters in the
model. In other words y is redundant given the other observed variables. In fact, it can
be shown that, as long as the growth rates of consumption, investment and government
expenditures are observed, the output growth variable is only informative with respect to
one parameter – the standard deviation of the measurement error σmegy . Two assumptions
in SGU are responsible for this result: (1) several model parameters are known, and (2)
output is the only variable observed with measurement error. Relaxing either one of
these assumptions would make output growth informative. For more details, see Iskrev
(2015).

To summarize, the analysis in this section shows that the two asset price variables in
the SGU model are not particularly informative about either the realizations of news
shocks or parameters related to news shocks. Macroeconomic aggregates, such as hours
worked, TFP, or the relative price of investment, are about as informative with respect
to news shocks as are the value of the firm (stock prices) or the risk-free interest rate.
Needless to say, this is a conclusion about the properties of the estimated SGU model.
Making changes that affect the way news shocks propagate throughout the economy
could alter the results. For instance, different values of the model parameters could
imply a much larger information content of asset prices. I explore this possibility in
the Online Appendix, by considering alternative parameterizations of the SGU model,
taken from Herbst and Schorfheide (2014), who estimate the same model with the same
set of variables using a different estimation approach, and from Miyamoto and Nguyen
(2015), who estimate the model adding forecast data to the original set of macroeconomic
variables. The results show that the information gains with respect to news shocks due
to observing asset prices remain small. Instead of changing the parameter values, one
may modify the way news shocks are introduced into the model. While in most of the
existing literature news shocks are specified similarly to the SGU model, as anticipated
innovations to fundamental shocks, Avdjiev (2016) considers an alternative specification
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where news are interpreted as anticipated changes in the long-run levels of fundamental
shocks. He finds that the long-run specification has stronger empirical support than
the alternative. Importantly, Avdjiev (2016) estimates his model using asset price data,
namely, the growth rate of the total stock market valuation and the real risk-free rate.
To find out if these changes alter the conclusion about the role of asset prices, in the
Online Appendix I apply the analysis of this section to the model of Avdjiev (2016).
In summary, the results show that the informational importance of asset prices in the
Avdjiev (2016) model depends crucially on whether or not TFP is treated as observed.
Assuming that TFP is unobserved, as Avdjiev (2016) does, results in large contributions
of information by both asset price variables. On the other hand, if TFP is treated as
observed, as in SGU, only the interest rate is found to be more informative than any
other observable with respect to a single new shock, namely, the stationary neutral
productivity news shock. This can be explained with the fact that there exists significant
complementarity between the asset price variables, on one hand, and TFP, on the other.
For more details see Section C in the Online Appendix.

5 Conclusion

The informational importance of observed variables with respect to structural shocks, or
unobserved endogenous variables, in business cycle models is often asserted without a
formal justification. This paper has proposed a general framework for measuring the
contribution of information that different observed variables make with respect to a given
latent variable. This allows researchers to evaluate and compare the informational value
of observables and identify the most informative ones. Having well identified structural
shocks and key unobserved endogenous variables, like potential output or natural rate
of interest, is a critical requirement for DSGE models to meet in order to fulfill their
potential as credible story-telling devices. Thus, the methodology described in the paper
could benefit both researchers who develop and estimate DSGE models and the readers
of such research, by improving their understanding and increasing the transparency of
these models.

An application to a business cycle model featuring news shocks revealed a relatively
modest contribution of information by asset prices. A necessary caveat to this result is
that it is entirely conditional on the particular model considered. Making changes in the
way shocks are introduced and propagate, or in the way asset prices are modeled, is likely
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to have an impact on the conclusions regarding the informational value of observables.
Indeed, this is an example of one of the intended purposes of the analysis developed in
this paper, namely, checking whether models are consistent with our intuition about how
the real world works. Finding out that they are not provides useful directions for their
improvement.

The analysis in this paper can be extended in several directions. With regards to news-
driven DSGE models, it would be interesting to know whether observing expectations
provides significantly more information than observing asset prices. Some evidence
that the identification of news shocks improves when data on expectations are used is
provided in Miyamoto and Nguyen (2019). However, their analysis only demonstrates
that information increases when relevant variables are added, and not that expectations
are superior sources of information about news shocks than other observables.16 In
terms of the methodology itself, more research is needed on how to perform this type of
analysis in non-linear and non-Gaussian models. In particular, the information gains
measures are, in general, not available in closed form, and would have to be estimated
using simulated data.

16Miyamoto and Nguyen (2019) find that the posterior distributions of the contributions of news
shocks to the unconditional variances of macro aggregates are tighter when data on expectations are used,
compared to when the same model is estimated without expectations. In principle, this only shows that
the additional variables are non-redundant with respect to the estimated parameters. The methodology
described in this paper can be used to show how the informational contributions of expectations compare
to other observables.
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Figure 2: Efficiency gains at MLE of SGU.
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